Brief report

Clinical experience using intranasal ketamine in the treatment of pediatric bipolar disorder/fear of harm phenotype

Demitri F. Papolos a,b,*, Martin H. Teicher c, Gianni L. Faedda d,e, Patricia Murphy f, Steven Mattis g,h

a Juvenile Bipolar Research Foundation, Maplewood, NJ, USA
b Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
c Harvard Medical School, Clinical Chronobiology Laboratory, McLean Hospital, MA, USA
d Lucio Bini Mood Disorders Center, New York, NY 10022, USA
e New York University Child Study Center, Langone Medical Center, NY, USA
f Eisai, Inc., Clinical Research Scientist, Woodcliff Lake, NJ, USA
g Department of Neurology, Weill Cornell Medical Center, New York, NY, USA
h Mattis & Luck Center for Neuropsychological Services, New York, NY, USA

ARTICLE INFO

Article history:
Received 20 August 2012
Accepted 22 August 2012
Available online 30 November 2012

Keywords:
Adolescent
Bipolar disorder
Child
Fear of harm
Ketamine
Sleep

ABSTRACT

Objectives: Intravenous ketamine, a glutamate N-methyl-D-aspartate (NMDA) receptor antagonist, has been shown to exert a rapid antidepressant effect in adults with treatment resistant depression. Children with bipolar disorder (BD) often respond poorly to pharmacotherapy, including polypharmacy. A pediatric-onset Fear of Harm (FOH) phenotype has been described, and is characterized by severe clinical features and resistance to accepted treatments for BD. The potential efficacy and safety of intranasal ketamine in children with BD with FOH-phenotype were assessed by a systematic retrospective chart review of a case series from the private practice of one of the authors, including cases with clear refractoriness to mood stabilizers, antipsychotics and benzodiazepines.

Methods: A comparison was made between routinely collected symptom measures 1–2 weeks prior to and after the administration of ketamine, in 12 treatment-refractory youth, 10 males 2 females ages 6–19 years.

Results: Ketamine administration was associated with a substantial reduction in measures of mania, fear of harm and aggression. Significant improvement was observed in mood, anxiety and behavioral symptoms, attention/executive functions, insomnia, parasomnias and sleep inertia. Treatment was generally well-tolerated.

Conclusions: Intranasal ketamine administration in treatment-resistant youth with BD-FOH produced marked improvement in all symptomatic dimensions. A rapid, substantial therapeutic response, with only minimal side effects was observed. Formal clinical trials to assess safety and efficacy are warranted.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Bipolar disorder (BD) is a severe and relatively common, recurrent, psychiatric disorder of depression, mania, hypomania, and mixed episodes. Pediatric bipolar disorder (PBD) is characterized by rapid cycling states, is frequently treatment resistant and associated with multiple comorbidities that confound early diagnosis and complicate treatment (Berry et al., 2011; Chang, 2010; Faedda et al., 1995; Geller and Luby, 1997; Papulos and Papulos, 1999; Papulos, 2003). The Fear-of-harm phenotype of BD (BD-FOH), first described in 2009, includes features not listed among the DSM-IV BD criteria. Symptoms of co-morbid conditions, that are primary features of BD-FOH, include: aggression, separation anxiety, sleep/awake disorders (parasomnias and REM sleep-disorders), fearfulness of intruders, vivid recurrent nightmares, carbohydrate cravings, food hoarding, and germ contamination fears (Papolos et al., 2009). Some behavioral and affective symptoms of BD-FOH phenotype are consistent with increased fear sensitization with fear of aggression, and reactive aggression in response to perceived threats (see Table 1). Additionally, BD-FOH cases often overheat in the evening and/or feel cold in the morning, and experience thermo-disregulation: they feel hot/sweating in neutral temperatures and/or feel comfortable in extremely cold temperatures (Papolos et al., 2009).

Young children with BD-FOH experience frequently initial insomnia with bedtime refusal and/or difficulty settling at night, older youth report insomnia with racing thoughts and psychomotor agitation, and both, children and parents often complain of morning...
lathargy sleep-inertia (14). These sleep- and temperature-related symptoms may stem from a circadian phase delay and/or impaired ability to dissipate heat, particularly near the evening circadian temperature peak (Papolos et al., 2009).

Zarate et al., reported that i.v. ketamine, a N-methyl-D-aspartate (NMDA) receptor antagonist, produced a rapid, robust, and relatively sustained antidepressant effect in adults with treatment-resistant unipolar and bipolar depression (Zarate et al., 2006, 2012).

Ketamine, an approved anesthetic agent, is routinely used as a premedication for pediatric anesthesia, and appears to be better tolerated by children than adults. Ketamine has a wide margin of safety, does not depress respiratory and cardiovascular functions and rarely causes emergence reactions (transient psychotomimetic symptoms during anesthesia induction, almost never distressing, Green and Johnson, 1990; Howes, 2004). We decided (DFP) to administer ketamine, to one severely ill treatment refractory child (off label, with the parents’ consent and the child’s assent). Her dramatic positive response, along with literature indicating ketamine’s ability to decrease fear sensitization and (dose-dependently) reduce body temperature in animals (Pietersen et al., 2006; Yudofsky et al., 1986).

We report here on 12 cases where complete ratings of symptoms and side-effects were recorded. All individuals studied have continued maintenance treatment with ketamine, one for over 4 years.

2. Methods

2.1. Retrospective chart review

A systematic chart review of the 40 subjects with BD-FOH treated with off-label ketamine was conducted, and patients were selected based on: (1) availability of at least one pre-treatment symptom rating assessment (completed 1–2 weeks prior to ketamine treatment); (2) two or more post-treatment symptom rating extending over >2-month period. All subjects were diagnosed with BD according to DSM-IV criteria, and were treatment refractory (GAF < 55). The Child Bipolar Questionnaire (CBQ), Overt Aggression Scale (OAS) and Yale Brown Obsessive-compulsive Scale (YBOCS) were used to identify BD-FOH cases, and periodically to assess symptom severity and treatment response (Papolos et al., 2006; Yudofsky et al., 1986; Storch et al., 2006).

2.2. Rating instruments

Four rating instruments were used periodically in the course of clinical practice. Three were used to monitor symptom severity, and one was used to monitor the dissociative side effects of ketamine.

2.3. The child bipolar questionnaire (CBQ)

The CBQ is a 65-item parent-report scale, originally designed to identify cases with possible BD-FOH for further structured diagnostic assessment, and sub-grouping (based on symptom dimensions) for genotyping. It uses a scoring algorithm to identify DSM-IV BD, and attention-deficit/hyperactivity disorder (ADHD, 13). The CBQ assesses 10 domains, and provides a Total score, a Core Index score (core features of BD-FOH) and a FOH Subscale score (sum-score of 6 FOH factors). The Cronbach’s alpha coefficient, to assess the internal consistency of the CBQ, in clinician-assigned diagnosis of BD, was 0.929 (n=2427; Papolos et al., 2006).

2.4. Overt aggression scale (OAS)

The OAS is a 15-item clinician rating of four categories of aggression: Verbal (VA), Physical Against Objects (PAO), Physical Against Self (PAS), and Physical Against Other People (PAP) (Yudofsky et al., 1986).
2.5. Yale Brown obsessive-compulsive scale (YBOCS)

The YBOCS is a clinician rated scale of obsessive-compulsive symptoms in six dimensions which contains three subscales with symptoms relevant to the BD-FOH: Contamination-Fear Obsessions (CO), Aggressive Obsessions (AO), Hoarding/Saving Obsessions (HSO) (Storch et al., 2006).

2.6. The clinician administered dissociative states scale (CADSS)

The CADSS (16) was used to assess dissociative side effects of pre- and post-ketamine treatment. This 27-item scale has two components: a subjective, 19 item scale of clinician-read, subject-endorsed ratings (0 = not at all, 1 = slightly, 2 = moderately, 3 = considerably, 4 = extremely). The observer component rates eight behavioral items consistent with a dissociative state (Bremner et al., 1998; Coons, 1998; Spiegel and Cardena 1991). The CADSS was completed by the clinician 10’ before and 1 h following ketamine administration.

2.7. Ketamine administration

Subjects were given a racemic mixture of intranasal ketamine compounded in a 100 mg/ml solution and delivered intranasally in metered doses of 10 mg/administrations to 12 treatment-refractory youth, 10 males 2 females ages 6–19 years. Drug was delivered by an FDA approved metered nasal pump spray bottle made of white polyethylene plastic (Gallipot Pharmaceuticals). It consists of a 1 ounce container that delivers 0.1 cc spray per pump. Dose adjustments were based on CADSS’ side-effects profile and clinical response, and occurred at 3–6 day intervals until remission (of primary symptoms) was obtained. Doses ranged from 30 to 120 mg every 3–7 days, as clinically indicated and tolerated by individual patients.

2.8. Statistical analyses

The Pretreatment (PRE) ratings were obtained by parent interview – 1 to 2 weeks prior to initiation of intranasal ketamine. The post-treatment (POST) ratings were obtained from the same parent after multiple ketamine doses (an average of 6 administrations spanning 20 weeks). These ratings were averaged to provide a single POST measure for each instrument/subscale. PRE and POST comparisons were made using repeated-measure multivariate analysis of variance (MANOVA). Data were analyzed using R (R Development Core Team, 2010).

Our hypothesis, that side-effect probability or severity was dose dependent, was tested using non-linear least squares regression in which a two parameter logistic regression model was compared to a null-hypothesis model positing equal probability or severity across the four ketamine doses. Calculations were made using NL2SOL, an adaptive iterative non-linear algorithm implemented in R (nls) (Dennis et al., 1981). The null and dose-dependent models were evaluated by ANOVA to ascertain if the reduction in degrees of freedom by the more complex dose-dependent model was accompanied by a significant reduction in residual error.

3. Results

Table 2 describes the incidence, dose-dependent changes in CBQ ratings across the 10 symptom dimensions. The composite MANOVA revealed a robust PRE POST treatment difference (Pillai’s Trace = 0.78, F = 22.7, df = 11, p < 0.0001). There were significant differences between different CBQ factors (Pillai’s Trace = 0.56, F = 9.5, df = 9.3, p < 0.004), the within-subject interaction between PRE POST treatment ratings and CBQ items was not significant (Pillai’s Trace = 0.65, F = 6.6, df = 9.3, p = 0.1), thus suggesting that PRE-POST treatment effects were reasonably consistent across different dimensions. Overall, there was a 48% reduction in Core Index scores (F = 247.78, df = 1,1, p = 10−6) and a 48% reduction in HOH scores (F = 140.33, df = 1,1, p < 10−6).

OAS’ ratings of aggression were also substantially reduced by ketamine treatment (Pillai’s Trace = 0.78, F = 40, df = 1,1, p < 0.0001) (Table 2). Differences between the subscale measures and a significant PRE POST treatment by measure interaction (Pillai’s Trace = 0.80, F = 11.67, df = 3.9, p = 0.0002) were found. Using multivariate effect size, within-subject reduction was the greatest on ratings of verbal aggression (Pillai’s Trace = 0.87), and smallest on ratings of aggression towards self (Pillai’s Trace = 0.48). Table 2 shows mean scores for the three relevant YBOCS subscales from Pre to Post ketamine. The composite MANOVA showed a PRE POST treatment effect (Pillai’s Trace = 0.65, F = 20.83, df = 1,1, p = 0.001) and a significant PRE POST treatment by subscale interaction (Pillai’s Trace = 0.66, F = 9.8, df = 2, 10, p < 0.005). The individual MANOVA tests showed that among the obsessive dimensions, only aggressive obsessions were significantly reduced by ketamine treatment.

Table 3 describes the incidence, dose-dependent changes in incidence, and severity of CADSS items reported as experienced by the 12 patients. The side effects are listed in order of overall incidence (percent of patients reporting this item at any dose), from highest to lowest. The table also provides data on the number of subjects experiencing side-effects on each dose, and the number of subjects experiencing mild-1, moderate 2–3, or severe impairment of functioning in one area (i.e., suicidal ideation). School refusal, comorbid anxiety, obsessive rituals and poor social skills contributed to their impairment. These subjects were all treatment refractory having failed trials of mood-stabilizers (lithium and anticonvulsants), antipsychotics, and/or benzodiazepines, usually in combination (mean number of medication = 4.3). Intranasal ketamine doses of 30–120 mg, administered at intervals of 3–7 days, produced a rapid therapeutic response, usually within 1-hr of the administration (within 24-h in all cases). Therapeutic benefits typically lasted 72–96 h, and were followed by a dramatic return of HOH symptoms.

As seen in Table 2, there were marked PRE and POST differences in CBQ ratings across the 10 symptom dimensions. The composite MANOVA revealed a robust PRE POST treatment difference (Pillai’s Trace = 0.78, F = 22.7, df = 11, p < 0.0001). When there were significant differences between different CBQ factors (Pillai’s Trace = 0.56, F = 9.5, df = 9.3, p < 0.004), the within-subject interaction between PRE POST treatment ratings and CBQ items was not significant (Pillai’s Trace = 0.65, F = 6.6, df = 9.3, p = 0.1), thus suggesting that PRE-POST treatment effects were reasonably consistent across different dimensions. Overall, there was a 48% reduction in Core Index scores (F = 247.78, df = 1,1, p = 10−6) and a 48% reduction in HOH scores (F = 140.33, df = 1,1, p < 10−6).
severe-4 side-effects, summed across all doses. Because of the small number of patients and high item-to-patient ratio, these data are primarily qualitative and descriptive (Table 4).

Non-linear logistic modeling failed to show a significant relationship between dose and incidence for 10 of the 12 side effects. However, the incidence of dizziness ($F=5.91$, $df=1.46$, $p<0.02$) and heightened color intensity ($F=5.97$, $df=1.46$, $p<0.02$) varied in a dose-dependent manner. Similarly, for most of the side effects the relationship between dose and severity fell short of significance. However, significant relations between dose and severity emerged for ratings of dizziness ($F=7.15$, $df=1.46$, $p=0.01$), objects looking different ($F=4.32$, $df=1.46$, $p<0.05$), and heightened color intensity ($F=6.27$, $df=1.46$, $p<0.02$) (Table 5).

Overall, the severity of the CADSS-assessed side effects was generally mild or moderate, with 'severe' being reported almost exclusively at Dose 4. The duration of these dissociative effects was always less than 60 min post-administration. None of the ketamine effects required medical intervention in any patient at any dose. The incidence, and severity, of a majority of somatic SE’s that have been noted in the literature, such as vomiting, nausea, respiratory distress, and headache, were among the lowest of the SEs assessed by the CADSS.

Table 3
Pre-versus post-ketamine ratings on the overt aggression scale.

<table>
<thead>
<tr>
<th>OAS subscale</th>
<th>Pre</th>
<th>SD</th>
<th>Post</th>
<th>SD</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal aggression</td>
<td>12.00</td>
<td>3.41</td>
<td>5.67</td>
<td>1.78</td>
<td><0.0001</td>
</tr>
<tr>
<td>Physical aggression toward objects</td>
<td>8.67</td>
<td>2.71</td>
<td>4.42</td>
<td>1.38</td>
<td><0.0001</td>
</tr>
<tr>
<td>Physical aggression toward self</td>
<td>7.33</td>
<td>3.50</td>
<td>4.17</td>
<td>0.39</td>
<td><0.0005</td>
</tr>
<tr>
<td>Physical aggression toward others</td>
<td>8.50</td>
<td>3.53</td>
<td>4.83</td>
<td>1.34</td>
<td><0.005</td>
</tr>
</tbody>
</table>

Table 4
Pre-versus post-ketamine ratings on the Yale-Brown obsessive-compulsive scale.

<table>
<thead>
<tr>
<th>YBOCS subscale</th>
<th>Pre</th>
<th>SD</th>
<th>Post</th>
<th>SD</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contamination obsessions</td>
<td>9.67</td>
<td>2.15</td>
<td>8.67</td>
<td>1.37</td>
<td>n.s</td>
</tr>
<tr>
<td>Aggressive obsessions</td>
<td>23.17</td>
<td>8.94</td>
<td>11.83</td>
<td>2.48</td>
<td><0.005</td>
</tr>
<tr>
<td>Hoarding/saving obsessions</td>
<td>1.92</td>
<td>1.24</td>
<td>1.42</td>
<td>0.67</td>
<td>n.s</td>
</tr>
</tbody>
</table>

* p-value of multivariate ANOVA, including all items in the subscale, for pre-to-post-ketamine.

Table 5
Incidence, dose-dependent changes in incidence, and severity of CADSS items on ketamine response.

<table>
<thead>
<tr>
<th>Overall incidence</th>
<th>Proportion reporting (of 12 patients)</th>
<th>Dose (# of patients reporting this SE at this dose)</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Dizziness</td>
<td>92</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Elated mood state</td>
<td>75</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Seeing things as</td>
<td>75</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Real/clarity spaced out</td>
<td>75</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Loss of balance</td>
<td>67</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Drowsy</td>
<td>58</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sense of body change</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Disconnected from reality</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Wave of cooling</td>
<td>50</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Acting as if in a dream</td>
<td>42</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Nausea</td>
<td>42</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Sense that things are unreal</td>
<td>33</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Objects different than expected</td>
<td>33</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Increase in color intensity</td>
<td>33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Experienced memory problems</td>
<td>25</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Confusion with identity</td>
<td>25</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Felt as if seeing world through a fog</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Heart palpitations</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Saw visions/heard voices</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Respiratory distress</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Decreased color intensity</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Improper urination</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4. Discussion

This retrospective chart review of the off-label use of intranasal ketamine treatment of 12 youth with refractory BD-FOH provides preliminary support for the potential efficacy and tolerability of this treatment.

The data presented are preliminary, neither blind nor placebo-controlled, and must be interpreted with caution. Nevertheless the results of this case series are consistent with earlier reports of the efficacy of ketamine administered by IV bolus in adult clinical studies (Zarate et al., 2006, 2012), which have consistently demonstrated that a single sub-psychomimetic dose of ketamine, produces fast-acting antidepressant responses in patients suffering from major depressive disorder or other severe mood disorders.

The most striking finding was that, once an appropriate therapeutic dose and administration schedule was achieved, there was immediate and near complete resolution of most, if not all symptoms within 1–2 h post ketamine administration.

Intranasal ketamine treatment at 30–120 mg was well tolerated, with minimal and predictable side effects, and no patient withdrew from treatment because of unacceptable side effects. The duration of therapeutic effect fluctuated between 36 and 60 h. Perhaps, because of the rapid elimination half-life of ketamine, side effects
were rarely observed beyond the first 60 min post administration. The development of tolerance to side effects was observed in over 90% of the sample. Side effects that were observed early, diminished over time or remained minimal following 4–5 administrations of the final effective dose. Dissociative side effects, when they did occur on initial dosing, also diminished subsequently, and were rarely reported or observed once tolerance to side-effects developed.

Several findings require further discussion. Ketamine produced rapid improvement of (hypo)manic hyperactivity, mood lability, hyperarousal, aggressive behaviors and obsessions. Improvement was also seen in ratings of anxiety, sleep, inattention, racing thoughts and carbohydrate craving. In most cases we observed a complete abolishment of manic/hypomanic and depressive symptoms. Ketamine administration also led to remission of symptoms associated with the core features of the FOH phenotype, including fear of harm, sleep-onset and sleep-offset disturbances, parasomnias, and the thermoregulatory symptoms associated with this syndrome.

Ketamine produced a dramatic reduction in the thermoregulatory symptom ratings. Of note, improvement of the behavioral symptoms appears to be temporarily associated with the resolution of the thermoregulatory deficits. For example, the improvement of night-time overheating, and extreme cold tolerance have been noted to immediately precede symptomatic improvement. Furthermore, we also noted that once the patients’ therapeutic window (typically 36–60 h) was exceeded, there was re-emergence of previously improved symptomatology.

Once remission of symptoms was achieved (marked reduction of symptoms rated as severe prior to treatment), ketamine administration maintained remission of symptoms with virtually no side effects for variable periods of time, typically 3–7 days. Ketamine successfully maintained full remission of symptoms even when previous concurrent treatments were tapered and withdrawn. In all cases, previously prescribed psychotropic medications were continued until a clear and consistent benefit of ketamine treatment could be observed. Over the course of several months of treatment other psychotropic agents were discontinued or tapered without loss of stability. This seems to indicate the specific efficacy of ketamine in resolving symptoms without causing any apparent development of pharmacological tolerance or development of unwanted side effects.

Conversely, as the effect of ketamine wore off, symptoms recurred in a fairly rapid progression, including a rapid return of the thermoregulatory deficits, which were followed within hours by the reappearance of clinical and behavioral symptoms and return to pre-treatment, full phenotypic manifestations until ketamine was administered.

The broad spectrum of ketamine treatment effects, and concurrent recurrence of cognitive, behavioral, affective, sleep and thermoregulatory manifestations as the ketamine effect wears off, lends support to the co-occurrence and interconnectedness of several psychopathological and pathophysiological dimensions observed in the FOH phenotype.

More importantly, this study suggests the effectiveness of ketamine in early-onset treatment-refractory BD, both in mono- and for maintenance treatment of BD-FOH. This case series raises the possibility that the benefits of ketamine treatment extend beyond its acute antidepressant effect in adults with treatment refractory depression, pointing to additional areas of psychopathology and impairment that might respond to this experimental treatment. Ketamine was highly effective in resolving both classic bipolar symptoms and symptoms that are integral part of the FOH phenotype. Although these are preliminary findings and require independent replication, they open the possibility for the clarification of a subtype of bipolar disorder characterized by pediatric onset, high rates of psychosis, treatment resistance, temperature dysregulation and the “Fear of Harm” phenotype. It remains to be seen whether this treatment may benefit other subtypes of pediatric bipolar disorder regardless of age of onset, polarity or comorbidity.

Our experience with the use of intranasal ketamine as an off-label option in severely ill children with PBD who have failed to benefit from conventional treatments provides only the most preliminary support. Carefully designed trials will need to be conducted. To this end we have obtained FDA Investigational New Drug and IRB approval to conduct a randomized double-blind placebo-controlled trial in this population.

Conflict of interest
No conflict declared.

Role of funding source
This retrospective chart review and analysis was supported, in part, through a grant provided by the Juvenile Bipolar Research Foundation (JBRF). Drs. Teicher and Faedda’s efforts were supported, in part, through NIMH award RCI MH080742. Dr. Papolo’s work has been supported in part by NIMH award R21 MH080268. Dr. Murphy received support from NIMH award MH080268.

Acknowledgment
The authors would like to acknowledge the Juvenile Bipolar Research Foundation for its support in the ongoing research on the Fear of Harm phenotype, as well as the assistance of Zachary Levine for his help in the preparation of this manuscript.

Appendix A. Supporting information
Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jad.2012.08.040.

References

